WNT Signals Control FGF-Dependent Limb Initiation and AER Induction in the Chick Embryo

نویسندگان

  • Yasuhiko Kawakami
  • Javier Capdevila
  • Dirk Büscher
  • Tohru Itoh
  • Concepción Rodrı́guez Esteban
  • Juan Carlos Izpisúa Belmonte
چکیده

A regulatory loop between the fibroblast growth factors FGF-8 and FGF-10 plays a key role in limb initiation and AER induction in vertebrate embryos. Here, we show that three WNT factors signaling through beta-catenin act as key regulators of the FGF-8/FGF-10 loop. The Wnt-2b gene is expressed in the intermediate mesoderm and the lateral plate mesoderm in the presumptive chick forelimb region. Cells expressing Wnt-2b are able to induce Fgf-10 and generate an extra limb when implanted into the flank. In the presumptive hindlimb region, another Wnt gene, Wnt-8c, controls Fgf-10 expression, and is also capable of inducing ectopic limb formation in the flank. Finally, we also show that the induction of Fgf-8 in the limb ectoderm by FGF-10 is mediated by the induction of Wnt-3a. Thus, three WNT signals mediated by beta-catenin control both limb initiation and AER induction in the vertebrate embryo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interacting FGF and WNT cascades are critical in early limb induction, AER formation and reciprocal epithelial- mesenchymal interactions necessary for AER maintenance

The limb bud is induced in the lateral plate mesoderm in response to signals thought to be relayed in several steps from the embryo midline to the periphery (reviewed by Martin, 1998). Growth and patterning of the limb bud is organized by three signaling centers that arise before or soon after initial budding, and whose activities polarize pattern formation along the three axes of the limb: ant...

متن کامل

A role for FGF-8 in the initiation and maintenance of vertebrate limb bud outgrowth

BACKGROUND The outgrowth of the vertebrate limb bud is the result of a reciprocal interaction between the mesenchyme and a specialized region of the ectoderm, the apical ectodermal ridge (AER), which overlies it. Signals emanating from the AER act to maintain the underlying mesenchyme, called the progress zone, in a highly proliferative and undifferentiated state. Removal of the AER results in ...

متن کامل

The ectodermal control in chick limb development: Wnt-7a, Shh, Bmp-2 and Bmp-4 expression and the effect of FGF-4 on gene expression

We have manipulated the chick limb bud by dorsoventrally inverting the ectoderm, by grafting the AER to the dorsal or ventral ectoderm and by insertion of an FGF-4 soaked heparin bead into the mesoderm. After dorso-ventral reversal of the ectoderm, Wnt-7a expression is autonomous from an early stage of limb development in the original dorsal ectoderm. Exogenous FGF-4 causes ectopic Wnt-7a expre...

متن کامل

Initiation of dorso-ventral axis during chick limb development

We analysed spatio-temporal expression of dorso-ventral genes - Wnt-7a, En-1, Lmx-1 and Fgf-8 - during both normal and ectopic limb formation following fibroblast growth factor (FGF) application to the flank. We confirm that Wnt-7a is the first of these genes to be expressed in dorsal ectoderm in limb-forming regions. We also noticed patterns and kinetics of gene expression specific to chick th...

متن کامل

Retinoic acid is required for the initiation of outgrowth in the chick limb bud

BACKGROUND Retinoic acid (RA) is present in the chick limb bud, and excess RA induces limb duplications. Here, we have investigated the role of endogenous RA during chick limb development by preventing the synthesis of RA and testing the effect on various genes expressed during limb initiation and outgrowth. RESULTS We demonstrate that the stage 20/21 limb bud synthesizes didehydroretinoic ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 104  شماره 

صفحات  -

تاریخ انتشار 2001